



# **Test report**

## **Skamotec 225**

Skamol A/S Østergade 58-60 DK-7900 Nykøbing Mors Denmark

File:

PF13386

Serial No.:

12612

Ref.:

LIA/MPA

Encl.:

0

Date:

2010-09-22

www.dbi-net.dk



## 1 SPONSOR

Skamol A/S Østergade 58-60 DK-7900 Nykøbing Mors Denmark

## 2 MATERIAL

Calcium silicate board.

#### **Trade Name**

Skamotec 225.

#### 3 NAME OF MANUFACTURER

The sponsor is the manufacturer.

## **4 NATURE OF TEST**

With reference to DBI-Danish Institute of Fire and Security Technology's sampling report dated 2010-08-27, file No. CP00006a, the sponsor desired initial type testing (ITT) in accordance with EN ISO 1182:2010 and EN ISO 1716:2002.

## 5 SAMPLE

2010-09-07 DBI received the following sample:

1 board of Scamotec 225, with the dimensions 1000 x 610 x 25.5 mm.

Density at 20°C (undried): 228 kg/m³ at the state of receipt determined by weight and measures of the sample.

The sample was marked "CP00006 2010-08-26 TN".

The following information was given by the sponsor:

Density: 225 kg/m³

- Fibre content: 4.3 %

**Danish Institute of Fire and Security Technology** 

**File: PF13386** Serial No.: 12612 Page 2 of 4

Date: 2010-09-22



Five specimens were prepared from the sample for the EN ISO 1182 test and the sample was also used for the determination of heat of combustion.

## 6 CONDITONING

The specimens were stored in a conditioning room having an atmosphere with a relative humidity of  $50 \pm 5$ % at a temperature of  $23 \pm 2$  °C. The specimens were kept in this room until the tests were performed.

## **7 TEST METHODS**

The tests were performed in accordance with

EN ISO 1182:2010 Reaction to fire tests for building products -

Non-combustibility test (ISO 1182:2010)

EN ISO 1716:2002 Reaction to fire tests for building products –

Determination of the heat of combustion

(ISO 1716:2002)

## **8 TEST RESULTS**

#### 8.1EN ISO 1182:2010

Date of test: 2010-09-10.

In the following table is shown initial furnace temperature, maximum furnace temperature rise in relation to final equilibrium temperature, together with observations of flaming and the loss of mass.

| Test       | Initial furnace | Maximum          | Duration of       | Mass loss |
|------------|-----------------|------------------|-------------------|-----------|
| specimen   | temperature     | temperature rise | sustained flaming |           |
| No.        | (°C)            | furnace (°C)     | (s)               | (%)       |
| 1          | 746             | 3                | 0                 | 10.3      |
| 2          | 749             | 5                | 0                 | 10.2      |
| 3          | 746             | 4                | 0                 | 10.5      |
| 4          | 747             | 4                | 0                 | 10.4      |
| 5          | 748             | 4                | 0                 | 10.4      |
| Mean value | 747             | 4                | 0                 | 10.4      |

Date: 2010-09-22



## 8.2EN ISO 1716:2002

Date of test: 2010-09-13

| Test No.   | Gross heat of combustion (pCS) in MJ/kg |  |
|------------|-----------------------------------------|--|
| 1          | 0.64                                    |  |
| 2          | 0.71                                    |  |
| 3          | 0.66                                    |  |
| 4          | -                                       |  |
| 5          | -                                       |  |
| Mean value | 0.67                                    |  |

## 9 STATEMENT

The test results relate to the behaviour of the test specimens of the product under the particular conditions of the test; they are not intended to be the sole criterion for assessing the potential fire hazard of the product in use.

Martin Pauner M.Sc.Civ.Eng.

/

Lina Ivar Andersen B.Sc.Chem.Eng.Hon

Skamol A/S Østergade 58-60 DK-7900 Nykøbing Mors Denmark

Date: 2010-09-22